

SSCE5V041SB

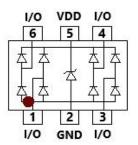
Ultra Low Capacitance Array for ESD Protection

Description

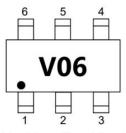
The SSCE5V041SB is a high performance and low-cost design which includes surge rated diode arrays to protect high speed data interfaces. The SSCE5V041SB family has been specifically designed to protected sensitive components. Which are connected to data and transmission lines, from over-voltage caused by Electrostatic Discharging (ESD). Electrical Fast Transients (EFT), and lightning.

The SSCE5V041SB is a unique design which includes surge rated, low capacitance steering diodes and a unique design of clamping cell which is an equivalent TVS diodes in a single package. During transient conditions, the steering diodes direct the transient to either the power supply line or to the ground line. The internal unique design of clamping cell prevents over-voltage on the power line, protecting any downstream components. The SSCE5V041SB may be used to meet the ESD immunity requirements of IEC 61000-4-2, level 4(±15KV air, ±10KV contact discharge).

Feature


- \Rightarrow 60W peak pulse power ($t_P = 8/20 \mu s$)
- ♦ SOT23-6L Package
- ♦ Working voltage: 5V
- ♦ Low clamping voltage
- ♦ Low capacitance
- ♦ Low leakage current
- ♦ Response Time is<1 ns</p>
- ♦ RoHS compliant
- Complies with following standards:
 - IEC 61000-4-2 (ESD) immunity test

Air discharge: ±15kV


Contact discharge: ±10kV

-IEC 61000-4-5(Surge) 3A (8/20µs)

PIN configuration

Circuit Diagram

Marking (Top View)

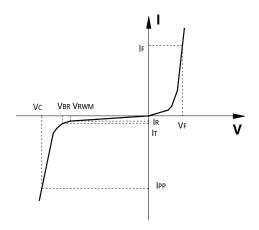
Applications

- ♦ Video Graphics Cards
- ♦ USB2.0 Power and Data lines protection
- ♦ Notebook and PC Computers
- ♦ Monitors and Flat Panel Displays
- ♦ IEEE 1394 Firewire Ports
- ♦ SIM Ports

Mechanical data

- ♦ Lead finish:100% matte Sn (Tin)
- ♦ Mounting position: Any
- ♦ Qualified max reflow temperature:260°C

1 / 5


- ♦ Device meets MSL 3 requirements
- ♦ Pure tin plating: 7 ~ 17 um

Pin flatness: ≤3mil

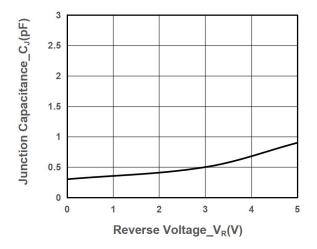
• Electronic Parameter

Symbol	Parameter	
V_{RWM}	Peak Reverse Working Voltage	
I _R	Reverse Leakage Current @ V _{RWM}	
V _{BR}	Breakdown Voltage @ I⊤	
I _T	Test Current	
I _{PP}	Maximum Reverse Peak Pulse Current	
Vc	Clamping Voltage @ IPP	
P _{PP}	Peak Pulse Power	
Сл	Junction Capacitance	

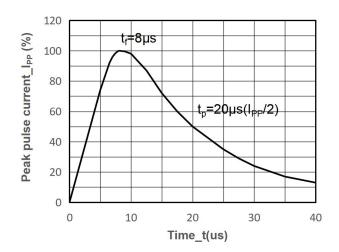
Absolute maximum rating @T_A = 25℃

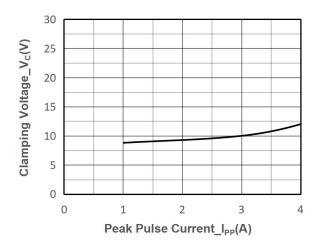
Parameter	Symbol	Value	Unit		
Peak Pulse Power (8/20µs)	P _{PP}	60	W		
Peak Pulse Current (8/20µs)		I _{PP}	3	Α	
ESD Rating per IEC61000-4-2:	Contact	N/	10	147	
	Air	V _{ESD}	15	kV	
Storage Temperature		T _{STG}	-55/+150	$^{\circ}$	
Operating Temperature		TJ	-55/+125	$^{\circ}$	

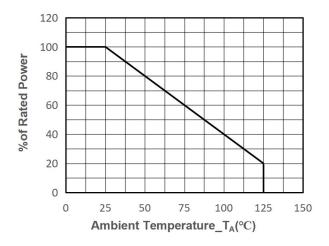
• Electrical Characteristics @ $T_A = 25^{\circ}$ C


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Peak Reverse Working Voltage	V_{RWM}				5	V
Breakdown Voltage	V_{BR}	I _T = 1mA	6.0			V
Reverse Leakage Current	I _R	V _{RWM} = 5V			1	μA
Clamping Voltage	V _{C1}	$I_{PP} = 1A$, $t_P = 8/20 \mu s$		8.8	12	V
(I/O pin to GND)	V _{C2}	$I_{PP} = 3A$, $t_P = 8/20 \mu s$		10.8	14	V
ESD Clamping Voltage(Note1)	V _{CL-ESD}	IEC 61000-4-2+ 8kV(I _{TLP} =16A),contact mode,T=25℃,any I/O pin to GND		19		V
Dynamic resistance	R _{DYN}			0.7		Ω
Junction Capacitance	C₃	V _R = 0V, f = 1MHz, between I/O pins		0.25	0.5	pF
Junction Capacitance	C₃	$V_R = 0V$, $f = 1MHz$, I/O pins pin to GND		0.4	0.9	pF

Note 1: ESD Clamping Voltage was measured by Transmission Line Pulsing (TLP) System.


TLP conditions: Z_0 =50 Ω , t_p = 100ns, t_r = 1ns.


• Typical Performance Characteristics

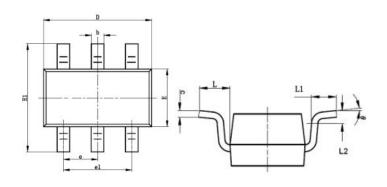

Junction Capacitance vs. Reverse Voltage

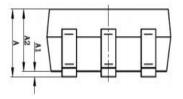
8/20µs Pulse Waveform

Clamping Voltage vs. Peak Pulse Current

Power derating vs. Ambient temperature

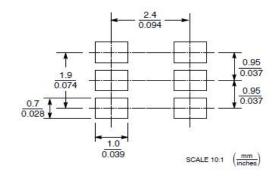
• Package Information


Ordering Information


Device	Package	Qty per Reel	Reel Size
SSCE5V041SB	SOT23-6L	3000	7 Inch

Mechanical Data

Case: SOT23-6L


Case Material: Molded Plastic. UL Flammability

DIM	Millimeters			
DIN	Min	Max		
Α	0.900	1.450		
A 1	0.000	0.150		
A2	0.900	1.300		
b	0.300	0.500		
С	0.080	0.210		
D	2.720	3.120		
E	1.400	1.800		
E1	2.600	2.950		
е	0.950BSC			
el	1.9BSC			
L1	0.300	0.600		
L	0.7REF			
L2	0.25REF			
θ	0	8		

Recommended Pad outline (Unit: mm)

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.